Compact connected spaces via the projective Fraïssé limit constructions

Aleksandra Kwiatkowska

Winter School 2023, Štěkeň, 2nd talk

28.01-4.02.2023

Lelek fan Universal Knaster continuum

Lelek fan

- C the Cantor set
- ② continuum compact and connected metric space
- Solution Cantor fan F is the cone over the Cantor set: $C \times [0,1]/C \times \{0\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

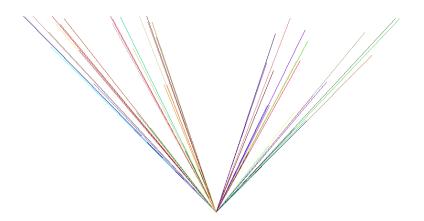
Lelek fan

- C the Cantor set
- ② continuum compact and connected metric space
- Solution Cantor fan F is the cone over the Cantor set: $C \times [0,1]/C \times \{0\}$
- Lelek fan L is a subcontinuum of the Cantor fan with a dense set of endpoints

伺 ト イヨト イヨト

Examples Monotone maps Lelek fan Universal Knaster continuum

Lelek fan



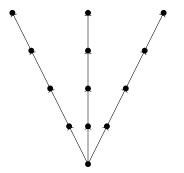
▲御▶ ▲ 臣▶ ▲ 臣▶

æ

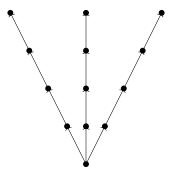
Let R be a binary relation symbol. Let \mathcal{F} be the family of all finite reflexive fans.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let R be a binary relation symbol. Let \mathcal{F} be the family of all finite reflexive fans.



Let R be a binary relation symbol. Let \mathcal{F} be the family of all finite reflexive fans.



Theorem (Bartošová-K. '15)

F is a projective Fraïssé class.

イロト イヨト イヨト

э

Lemma

Let \mathbb{L} be the projective Fraissé limit of \mathcal{F} . Then $R_S^{\mathbb{L}}$, where $R_S^{\mathbb{L}}(x, y)$ iff $R^{\mathbb{L}}(x, y)$ or $R^{\mathbb{L}}(y, x)$, is an equivalence relation such that each equivalence class has at most two elements.

< 同 ト < 三 ト < 三 ト

Lemma

Let \mathbb{L} be the projective Fraissé limit of \mathcal{F} . Then $R_{\mathcal{S}}^{\mathbb{L}}$, where $R_{\mathcal{S}}^{\mathbb{L}}(x, y)$ iff $R^{\mathbb{L}}(x, y)$ or $R^{\mathbb{L}}(y, x)$, is an equivalence relation such that each equivalence class has at most two elements.

Theorem (Bartošová-K. '15)

 $\mathbb{L}/R^{\mathbb{L}}$ is the Lelek fan.

(日本) (日本) (日本)

Projective universality and Projective Ultrahomogeneity

smooth fan = subcontinuum of the Cantor fan that contains the top point

Theorem (Bartošová-K. '15)

- **1** Each smooth fan is a continuous image of the Lelek fan.
- 2 Let X be a smooth fan. Let d be a metric on X. If f₁ and f₂ are increasing continuous surjections from the Lelek fan onto X, then for any ε > 0 there exists a homeomorphism h of the Lelek fan such that for all x, d(f₁(x), f₂ ∘ h(x)) < ε.</p>

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Projective universality and Projective Ultrahomogeneity

smooth fan = subcontinuum of the Cantor fan that contains the top point

Theorem (Bartošová-K. '15)

- **1** Each smooth fan is a continuous image of the Lelek fan.
- 2 Let X be a smooth fan. Let d be a metric on X. If f₁ and f₂ are increasing continuous surjections from the Lelek fan onto X, then for any ε > 0 there exists a homeomorphism h of the Lelek fan such that for all x, d(f₁(x), f₂ ∘ h(x)) < ε.</p>

Remark

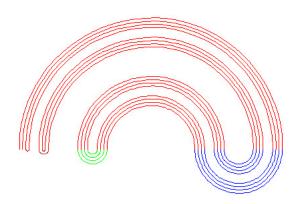
A somewhat related construction, of a compact space called Fraïssé fence, was given by Basso-Camerlo in 2021.

< ロ > < 同 > < 三 > < 三 >

Examples Nonotone maps

Lelek fan Universal Knaster continuum

The buckethandle Knaster continuum



Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse limit $\lim_{n \to \infty} (I_n, f_n)$ of a sequence of unit intervals $I_n = [0, 1]$ with continuous, open, non-homeomorphic surjections f_n that map 0 to 0.

「ヨト・ヨト・ヨト

Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse limit $\lim_{n \to \infty} (I_n, f_n)$ of a sequence of unit intervals $I_n = [0, 1]$ with continuous, open, non-homeomorphic surjections f_n that map 0 to 0.

• Universal Knaster continuum is the Knaster continuum which continuously and openly surjects onto all Knaster continua.

伺 ト イヨト イヨト

Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse limit $\lim_{n \to \infty} (I_n, f_n)$ of a sequence of unit intervals $I_n = [0, 1]$ with continuous, open, non-homeomorphic surjections f_n that map 0 to 0.

- Universal Knaster continuum is the Knaster continuum which continuously and openly surjects onto all Knaster continua.
- S. lyer (2022) constructed the universal Knaster continuum as the topological realization of a projective Fraïssé limit.
- Another construction of the universal Knaster continuum in the projective Fraïssé theoretic framework was presented by L. Wickman (2022).

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Topological graphs

Definition

A topological graph K is a graph (V(K), E(K)), whose domain V(K) is a 0-dimensional, compact, second-countable (thus has a metric) space and E(K) is a closed, reflexive and symmetric subset of $V(K)^2$.

< 同 ト < 三 ト < 三 ト

Topological graphs

Definition

A topological graph K is a graph (V(K), E(K)), whose domain V(K) is a 0-dimensional, compact, second-countable (thus has a metric) space and E(K) is a closed, reflexive and symmetric subset of $V(K)^2$.

Definition

- A continuous function f: L → K is a homomorphism if (a, b) ∈ E(L) implies (f(a), f(b)) ∈ E(K).
- A homomorphism f is an epimorphism if it is moreover surjective on both vertices and edges.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Monotone maps

Definition

A subset S of a topological graph G is disconnected if there are two nonempty closed subsets P and Q of S such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset S of G is connected if it is not disconnected.

伺 ト イヨ ト イヨト

Monotone maps

Definition

A subset S of a topological graph G is disconnected if there are two nonempty closed subsets P and Q of S such that $P \cup Q = S$ and if $a \in P$ and $b \in Q$, then $\langle a, b \rangle \notin E(G)$. A subset S of G is connected if it is not disconnected.

Definition

- (continua) Let K, L be continua. A continuous map f: L → K is called monotone if for every subcontinuum M of K, f⁻¹(M) is connected.
- (graphs) Let G, H be topological graphs. An epimorphism
 f: G → H is called monotone if for every closed connected
 subset Q of H, f⁻¹(Q) is connected.

< ロ > < 同 > < 回 > < 回 >

Menger sponge = universal Menger curve

Theorem (Menger '26)

The universal Menger curve is universal in the class of all metric separable spaces of dimension ≤ 1 .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Menger sponge = universal Menger curve

Theorem (Menger '26)

The universal Menger curve is universal in the class of all metric separable spaces of dimension ≤ 1 .

Theorem (Anderson '58)

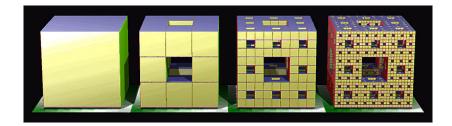
The following are equivalent for a continuum X.

- X is homeomorphic to the universal Menger curve,
- X is a locally connected curve with no local cut points and no planar open nonempty subsets,
- S X is a homogeneous locally connected curve, which is not homeomorphic to a circle.

くロ と く 同 と く ヨ と 一

Examples Monotone maps and all connected graphs

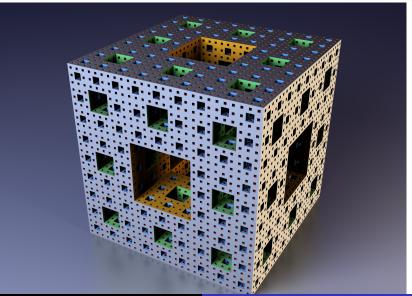
Universal Menger curve - construction



• • = • • = •

Examples Monotone maps

Universal Menger curve - construction 2



Aleksandra Kwiatkowska

Compact connected spaces via the projective Fraïssé limit constru

Universal Menger curve - Fraïssé construction

Theorem (Panagiotopoulos-Solecki)

The class \mathcal{F} of all finite connected graphs with monotone epimorphisms is a Fraïssé class. The topological realization of the projective Fraïssé limit of \mathcal{F} is the universal Menger curve.

Let \mathbb{M} denote the projective Fraïssé limit of \mathcal{F} .

伺 ト イヨト イヨト

Universal Menger curve - Fraïssé construction

Theorem (Panagiotopoulos-Solecki)

The class \mathcal{F} of all finite connected graphs with monotone epimorphisms is a Fraïssé class. The topological realization of the projective Fraïssé limit of \mathcal{F} is the universal Menger curve.

Let \mathbb{M} denote the projective Fraïssé limit of \mathcal{F} .

Theorem (Panagiotopoulos-Solecki '22)

- Each Peano continuum is a continuous monotone image of the universal Menger curve.
- ② Let X be a Peano continuum. Let d be a metric on X. If f₁ and f₂ are continuous monotone surjections from the universal Menger curve onto X, then for any € > 0 there exists a homeomorphism h of the universal Menger curve such that for all x, d(f₁(x), f₂ ∘ h(x)) < €.</p>

Homogeneity of the universal Menger curve

Definition

A topological subgraph K of \mathbb{M} is locally non-separating if for each clopen connected W, the set $W \setminus K$ is connected.

Homogeneity of the universal Menger curve

Definition

A topological subgraph K of \mathbb{M} is locally non-separating if for each clopen connected W, the set $W \setminus K$ is connected.

Theorem (Panagiotopoulos-Solecki '22)

If K and L are saturated and locally non-separating subgraphs of \mathbb{M} , then each isomorphism from K to L extends to an automorphism of \mathbb{M} .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Homogeneity of the universal Menger curve

Definition

A topological subgraph K of \mathbb{M} is locally non-separating if for each clopen connected W, the set $W \setminus K$ is connected.

Theorem (Panagiotopoulos-Solecki '22)

If K and L are saturated and locally non-separating subgraphs of \mathbb{M} , then each isomorphism from K to L extends to an automorphism of \mathbb{M} .

Corollary (Anderson '58)

Any bijection between finite subsets of the universal Menger curve extends to a homeomorphism.

Proof.

Sketch of the proof on a blackboard.