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Lelek fan
Universal Knaster continuum

Lelek fan

1 C – the Cantor set

2 continuum - compact and connected metric space

3 Cantor fan F is the cone over the Cantor set:
C × [0, 1]/C × {0}

4 Lelek fan L is a subcontinuum of the Cantor fan with a dense
set of endpoints
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Lelek fan from a projective Fräıssé limit, part 1

Let R be a binary relation symbol. Let F be the family of all finite
reflexive fans.

Theorem (Bartošová-K. ’15)

F is a projective Fräıssé class.
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Lelek fan from a projective Fräıssé limit, part 2

Lemma

Let L be the projective Fräıssé limit of F . Then RL
S , where

RL
S (x , y) iff RL(x , y) or RL(y , x), is an equivalence relation such

that each equivalence class has at most two elements.

Theorem (Bartošová-K. ’15)

L/RL is the Lelek fan.
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Projective universality and Projective Ultrahomogeneity

smooth fan = subcontinuum of the Cantor fan that contains the
top point

Theorem (Bartošová-K. ’15)

1 Each smooth fan is a continuous image of the Lelek fan.

2 Let X be a smooth fan. Let d be a metric on X . If f1 and f2
are increasing continuous surjections from the Lelek fan onto
X , then for any ϵ > 0 there exists a homeomorphism h of the
Lelek fan such that for all x , d(f1(x), f2 ◦ h(x)) < ϵ.

Remark

A somewhat related construction, of a compact space called
Fräıssé fence, was given by Basso-Camerlo in 2021.
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The buckethandle Knaster continuum
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Knaster continua

Definition

A Knaster continuum is a continuum homeomorphic to the inverse
limit lim←−(In, fn) of a sequence of unit intervals In = [0, 1] with
continuous, open, non-homeomorphic surjections fn that map 0
to 0.

Universal Knaster continuum is the Knaster continuum which
continuously and openly surjects onto all Knaster continua.

S. Iyer (2022) constructed the universal Knaster continuum as
the topological realization of a projective Fräıssé limit.

Another construction of the universal Knaster continuum in
the projective Fräıssé theoretic framework was presented by L.
Wickman (2022).
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and all connected graphs

Topological graphs

Definition

A topological graph K is a graph (V (K ),E (K )), whose domain
V (K ) is a 0-dimensional, compact, second-countable (thus has a
metric) space and E (K ) is a closed, reflexive and symmetric subset
of V (K )2.

Definition

1 A continuous function f : L→ K is a homomorphism if
⟨a, b⟩ ∈ E (L) implies ⟨f (a), f (b)⟩ ∈ E (K ).

2 A homomorphism f is an epimorphism if it is moreover
surjective on both vertices and edges.
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Monotone maps

Definition

A subset S of a topological graph G is disconnected if there are
two nonempty closed subsets P and Q of S such that P ∪ Q = S
and if a ∈ P and b ∈ Q, then ⟨a, b⟩ /∈ E (G ). A subset S of G is
connected if it is not disconnected.

Definition

(continua) Let K , L be continua. A continuous map
f : L→ K is called monotone if for every subcontinuum M of
K , f −1(M) is connected.

(graphs) Let G , H be topological graphs. An epimorphism
f : G → H is called monotone if for every closed connected
subset Q of H, f −1(Q) is connected.
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Menger sponge = universal Menger curve

Theorem (Menger ’26)

The universal Menger curve is universal in the class of all metric
separable spaces of dimension ≤ 1.

Theorem (Anderson ’58)

The following are equivalent for a continuum X .

1 X is homeomorphic to the universal Menger curve,

2 X is a locally connected curve with no local cut points and no
planar open nonempty subsets,

3 X is a homogeneous locally connected curve, which is not
homeomorphic to a circle.
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Universal Menger curve - construction
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Universal Menger curve - construction 2
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Universal Menger curve - Fräıssé construction

Theorem (Panagiotopoulos-Solecki)

The class F of all finite connected graphs with monotone
epimorphisms is a Fräıssé class. The topological realization of the
projective Fräıssé limit of F is the universal Menger curve.

Let M denote the projective Fräıssé limit of F .

Theorem (Panagiotopoulos-Solecki ’22)

1 Each Peano continuum is a continuous monotone image of
the universal Menger curve.

2 Let X be a Peano continuum. Let d be a metric on X . If f1
and f2 are continuous monotone surjections from the universal
Menger curve onto X , then for any ϵ > 0 there exists a
homeomorphism h of the universal Menger curve such that for
all x , d(f1(x), f2 ◦ h(x)) < ϵ.
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Homogeneity of the universal Menger curve

Definition

A topological subgraph K of M is locally non-separating if for each
clopen connected W , the set W \ K is connected.

Theorem (Panagiotopoulos-Solecki ’22)

If K and L are saturated and locally non-separating subgraphs of
M, then each isomorphism from K to L extends to an
automorphism of M.

Corollary (Anderson ’58)

Any bijection between finite subsets of the universal Menger curve
extends to a homeomorphism.

Proof.

Sketch of the proof on a blackboard.
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